

AppTek's APT Machine Translation System for IWSLT 2010

Evgeny Matusov, Selçuk Köprü {ematusov,skopru}@apptek.com

Overview

- AppTek's new *APT* machine translation system
- Arabic-to-English and Turkish-to-English BTEC tasks
- Competitive translation quality is obtained with a system that can be seamlessly turned into a real-life product.

Baseline System

- State-of-the-art phrase-based SMT decoder similar to MOSES
- New: run-based reordering penalty model [5]
- Efficient translation of multiple input paths (lattices)
- Minimum-error-rate training (optimize BLEU on development data)

Morphological Analysis and Segmentation

- Morphological analysis and segmentation is needed because of the complex morphology of Arabic and Turkish.
- Morphological disambiguation is performed
- by syntactic analysis of the sentence [1, 2].
- Morphemes are detached from each other for a better correspondence with English words and to reduce the out-of-vocabulary (OOV) rate.
- Arabic: detach all prefixes, suffixes, and the definite article
- Turkish: words have a clear but complex morphotactic structure \Rightarrow rule-based segmentation

Arabic-to-English Experiments

Things which helped:

- using multiple word alignments for phrase extraction
 - heuristic combination (grow-diag-final, "ACL", intersectionunion) of IBM model 4 and HMM alignments
- using several alternative morphological segmentation schemes for phrase extraction and translation
 - segmentation of all/infrequent words or no segmentation
 - efficient translation of a segmentation lattice
 - option to remove Arabic article/accusative marker in translation
- lexicalized run-based reordering model
 - probability of deviating from the monotonic path conditioned on the word that starts the new "run" and the last covered word
- sentence-level inverse IBM model 1

Turkish-to-English Experiments

- devset2 is used for the optimization of model scaling factors
- devset1 is used as the test set.

Language Model Experiments

Different *n*-gram models are estimated and evaluated.

truecased opt devset2

truecased opt devset1+2

Word Alignment Experiments

The effect of different heuristics on symmetrization of word alignments is explored. Multiple alignments are used for phrase extraction.

	LM Experime	nts	Alignment Experiments		
n -gram	Opt. BLEU	Test BLEU	Method	Opt. BLE	U Test BLEU
3	57.15	59.56	ACL	57.1	.8 59.87
4	57.73	60.67	grow-diag-fir	nal 53.7	75 56.41
5	57.31	61.55	intersection	55.8	30 59.27
6	57.66	60.81	intersunion	57.3	30 59.68
7	57.76	60.96	unify	52.5	57 55.69
8	57.58	60.74	left	56.0)4 59.65
9	57.61	59.86	right	54.0)2 56.74
			berkeley	55.1	2 57.81
			subset merge	ed 57.7	70 61.14
			all merged	57.3	61.55
ther Expo	eriments BE THE EXI	PRERIMENT	S		
			Opt. BLEU	Test BLEU	
	mapping	mapping contractions		62.37	
	multiple	multiple segmentations		60.92	
	truecasec	l opt devset1	63.26	59.46	

Things which did not help:

- "translation memory"
- character-level edit-distance based OOV correction
- POS-based OOV classification and phrase-level "translation"
 - assign POS tags to OOVs, translate using generalized phrase pairs
 - predict correct position of the OOV based on phrasal context

BLEU and TER scores in % on the IWSLT 2010 evaluation set			TER
1	no morphological segmentation	41.0	35.8
2	morphological segmentation for words w with $N(w) \le 100$	45.3	32.5
3	full morphological segmentation	45.2	32.3
4	+ optionally remove article/accusative marker	45.7	32.0
5	+ multiple morphological segmentation paths	46.6	31.9
6	+ POS-based reordering model	46.0	31.8
7	+ sentence-level inverse IBM model 1	46.6	31.4
8	+ lexicalized reordering model	46.8	31.4
9	like 3., but single alignment (IBM model 4, ACL heuristic)	44.7	33.6
10	like 5., but monotonic translation	43.7	33.7
11	like 8., but no translation memory	47.0	30.8
12	like 11., but no restoration of contractions	46.3	32.5
	primary submission	45.7	32.9

Conclusions

- AppTek's new *APT* MT system is competitive: ranked 3rd in Ar-En, 4th in Tr-En.
- The system utilizes comprehensive morphological analysis components to deal with rich

morphology languages.

• The biggest gains are achieved by considering

morphological segmentation alternatives and by employing novel reordering models.

 \mathbf{O}

• The translation systems produce translations at a speed of 12 words per second or more.

60.87

61.84

62.10

N/A

• AppTek's IWSLT systems are efficient enough to be used in hand-held devices

References

- [1] S. Köprü and J. Miller, "A Unification Based Approach to the Morphological Analysis and Generation of Arabic," in Proc. of the CAASL3, Ottawa, Ontario, Canada, 2009.
- [2] S. Köprü, "AppTek Turkish-English Machine Translation System Description for IWSLT 2009," in *Proc. of the International Workshop* on Spoken Language Translation, Tokyo, Japan, 2009, pp. 19–23.
- [3] R. Zens, "Phrase-based statistical machine translation: Models,

search, training," Ph.D. dissertation, RWTH Aachen University, Aachen, Germany, February 2008.

- [4] F. J. Och and H. Ney, "A systematic comparison of various statistical alignment models," Computational Linguistics, vol. 29, no. 1, pp. 19–51, March 2003.
- [5] E. Matusov and S. Köprü, "Improving Reordering in Statistical Machine Translation from Farsi," in AMTA 2010: The Ninth Confer-

ence of the Association for Machine Translation in the Americas, Denver, Colorado, USA, November 2010.

[6] J. DeNero and D. Klein, "Tailoring Word Alignments to Syntactic Machine Translation," in *Proceedings of the 45th Annual Meeting* of the Association of Computational Linguistics. Prague, Czech Republic: Association for Computational Linguistics, June 2007, pp. 17-24.