ITI-UPV SYSTEM DESCRIPTION FOR IWSLT 2010

Germán Sanchis-Trilles, Guillem Gascó, Vicent Alabau, Jesús Andrés-Ferrer, Jesús González-Rubio Martha-Alicia Rocha, Francisco Casacuberta, Jorge González, Joan-Andreu Sánchez {gsanchis,ggasco,valabau,jandres,jegonzalez,mrocha,fcn,jgonzalez,jandreu}@dsic.upv.es

Introduction

PRHLT group took part in the DIALOG and TALK tasks, emphasis on:

- DIALOG: Translation between syntactically different languages
- Make use of syntactic and linguistic information by means of ITGs
- TALK: Efficient training of SMT models in resource rich scenarios
- Include only appropriate training samples into the model

DIALOG TASK: ITGS AND MODEL COMBINATION

- 1. Inversion Transduction Grammar-based decoding
 - Formalism that underlies the translation: Phrasal ITGs.
- Chinese linguistic parsing enriches the reordering process.
- 2. Lattices for ASR error recovery
 - Training corpus preprocessed to resemble ASR input
 - Coupled ASR translation using Confusion Networks
- 3. Median string computation for hypothesis combination
 - Combine ITG-based and phrase-based translations
 - Benefit from high coverage of PB models and quality of ITGs
 - Consensus translation computed as the median string

TALK TASK: SELECTION IN RESOURCE-RICH SCENARIOS

- 1. Subtitle segmentation recovery
 - (a) Build independent sentences from subtitles.
 - Subtitles concatenated until end of line mark (".", "?", "!").
 - Information about subtitles is kept by means of <wall/> tag
 - (b) Translate input as a block, then recover subtitles
- 2. Probabilistic sentence selection
 - Two kind of corpora: in-domain, and out-of-domain
 - Estimate an in-domain probability model:

$$p(\mathbf{e}, \mathbf{f}, |\mathbf{e}|, |\mathbf{f}|) = p(\mathbf{e}, \mathbf{f}/|\mathbf{e}|, |\mathbf{f}|)p(|\mathbf{e}|, |\mathbf{f}|)$$

- with $p(|\mathbf{e}|, |\mathbf{f}|)$ estimated by MLE, and
- $p(\mathbf{e}, \mathbf{f}/|\mathbf{e}|, |\mathbf{f}|)$ a log linear model with the features:
 - a direct and an inverse IBM model 4, and
 - both source and target, 5-gram language model
- 3. On-line sentence selection for infrequent n-grams recovery
- Sentences with more infrequent n-grams are more informative
- Dynamic update of the n-grams counts
- Score each n-gram according to $s(x) = \max\{0, t N(x)\}\$
 - $\rightarrow N(x) =$ occurrence of n-gram x in test
 - $\rightarrow t = \text{minimum occurrence considered infrequent}$
- Select sentences with maximum global s(x) score
- 4. Bayesian adaptation for model stabilization
- MERT unstable if amount development data is small
- Bayesian adaptation: weights Λ viewed as random variables.
- After several approximations:

$$p(\mathbf{e}|\mathbf{f};T,A) = \sum_{\Lambda_m \in MC(\Lambda_t)} (p(A|\Lambda;T)p(\mathbf{e}|\mathbf{f},\Lambda))^{\frac{1}{5}} \, p(\Lambda|T)$$

with δ a leveraging factor and $MC(\Lambda_t)$ a weight-sampling.

DESCRIPTION OF THE PRESENTED SYSTEMS

- Baseline system
- Built with Moses in standard setup
- 5-gram LM with Kneser-Ney smoothing built with SRILM
- Log-linear weights optimized with MERT
- DIALOG: Chinese-English system
- Combination of various MT systems:
 - * Phrase-based:
 - · All references in development used in training
 - · Only single reference for the language model
 - * ITG-based: with linguistic information (Stanford parser)
 - * ASR system (only for ASR output condition)
- Normalized edit distance as dissimilarity measure
- Combine the 20-best translations of each system
- TALK: English-French system
 - All experiments conducted with phrase-based models (Moses)
- Training set split into training and internal development
- Results here shown for official development set
- All corpora provided were used for sentence selection
- Baseline with only in-domain corpus: 23.2 BLEU

Results on probabilistic sentence selection. nK = thousands sentences added.

Results for infrequent n-gram recovery. $\left|S\right|=$ total number of training sentences

nK	BLEU		nK	t	S	MERT	bayes
0	23.2	- !	5 0	-	96.9K	24.2	24.7
				1	99.9K	23.7	24.9
10	23.5		50	10	101.9K	24.1	25.2
50	24.2			_	146.9K	25.0	25.1
100	25.0	100		1	149.8K	24.6	25.3
200	25.1		10				
500	25.5			10	156.9K	24.1	25.4

- Translation quality when using MERT shows to be unstable
- Bayesian adaptation proves to be able to stabilize the weights
- Probabilistic sentence selection provides improvements
- Infrequent n-gram recovery provides further improvements
- Final system: nK = 500 and t = 10, total of 645.6K sentences

CONCLUSIONS AND FUTURE WORK

- DIALOG
- Consensus translations combine strengths of PB models and ITGs
- ASR: Confusion networks provided improvements over 1-best
- Future work
 - → Lexicalized Max. Entropy models for reordering in ITGs
 - → Research translation of lattices with confidence measures
- TALK
- Intelligent data selection: better use of computational resources
- Two BLEU points below best system, using only 3% of training
- Bayesian adaptation can be applied for system stabilization
- Future work:
 - → Compare selection vs random, optimize weights
 - → Research ratio probabilistic selection vs infrequent n-grams