

N-CODE HIGHLIGHTS

A billingual *n*-gram based decoder

- Each training sentence pair is a unique sequence of tuples with a minimal segmentation.
- Source side reordering computed before decoding via POS-based rewrite rules

Configuration	talk-tune	talk-test
base	35.82	35.35
base+bil6g	35.60	35.22
base-wikipedia	35.40	35.32

Wikipedia target LM

- The data extracted from the French Wikipedia is roughly extracted, filtered and tokenized
- A total amount of 40M tokens
- A specific target LM is estimated

LIMSI @ IWSLT 2010 Alexandre Allauzen, Josep M. Crego, İlknur Durgar El-Kahlout, Le Hai-Son, Guillaume Wisniewski and François Yvon

ABSTRACT

The Talk task (English to French):

- Extension of our in-house N-Code SMT system: a bilingual reordering model over generalized translation units
- Use of training data extracted from Wikipedia for target language model adaptation

N-Code's model

- Tuple 3-gram and target word 4-gram LMs (Kneser-Ney & interpolation)
- Two lexicon models (complementary translation scores for each tuple)
- Two lexicalized reordering models (predict orientation of next/previous translation unit)
- A weak distance-based distortion model
- A word-bonus and a tuple-bonus models

- *n*-gram LM over generalized translation units
- Generalized translation units enables larger ngram contexts (up to 6-grams)
- Helps to capture mid-range syntactic reorderings
- "Translation model" sentence structure
- The interpolation weights for LM are tuned on a held-out subset of the training TED-1.1 corpus
- The official TALK dev. is divided in two parts (*talk-tune* and *talk-test*)
- The system is tuned with MERT on *talk-tune*
- All configurations achieve very similar results
- The bilingual reordering model, as well as the use of Wikipedia do not yield to a significative BLEU improvement.

The BTEC task (Turkish to English):

BASIC PRE-PROCESSING

• Moses based system

• Pre-processing schemes for Turkish to reduce the morphological discrepancies with English

• Continuous space language models

• Tokenization: For both languages, we used inhouse tokenizers

• Turkish texts are morphologically analyzed and disambiguated

• Turkish words are represented with stems and lexical morphemes and then lowercased:

evin (your house) $\rightarrow ev+in$

• English texts are in true-case.

OUT-OF-VOCABULARY WORDS

Before tuning and decoding:

• Similar to the segmentation, OOV words are split morpheme by morpheme to get a "known" word

• When the root word is OOV, the whole word with all its morphemes is removed

• Exception for proper nouns

EXPERIMENTAL RESULTS

Impact of the pre-processing schemes:

System	BLEU
Baseline-3g-lm	37.15
Baseline-4g-lm	37.21
Baseline-5g-lm	38.37
Segmentation-t10	50.06
+Question Inversion	48.85
+Local Ordering	49.74
+Content Words	51.72
+00V	57.25

TURKISH SPECIFICITIES

FREQUENCY BASED SEGMENTATION

ver+ma+dh+m (I didn't give) $\rightarrow ver+ma+dh +m$

threshold of 10.

- Question inversion

System	case+punc. BLEU
iwslt09	52.97
iwslt10	48.42

• The productive and agglutinative morphology of Turkish implies a large vocabulary size

• Turkish has a flexible word order, but mainly subject-object-verb (SOV).

 \Rightarrow may affect the reliability of word alignment and the phrase extraction.

A recursive morphological decomposition:

• the whole word is segmented if the frequency of ver+ma+dh is upon a given threshold

• then we similarly consider the split and so on:

 $ver+ma+dh \rightarrow ver+ma +dh$

The best BLEU improvement was achieved with a

OTHER PRE-PROCESSING STEPS

• Short distance morpheme reordering

• Augmented training data with open-class words

• bias content root word alignments

• consider open-class words in both sides

Final System:

• Augmented training data using multiple references

• Frequency based segmentation, open-class words, splitting of OOV words

• 7-gram standard neural-network language model in a two pass decoding approach