LIUM's Statistical Machine Translation System for IWSLT 2010

Anthony Rousseau, Loïc Barrault, Paul Deléglise, Yannick Estève

LIUM, University of Le Mans, 72085 Le Mans cedex 9, France *FirstName.LastName@lium.univ-lemans.fr*

ABSTRACT

Participation of LIUM to the 2010 IWSLT campaign:
TALK task (based on TED website talks).
One system for each text condition.
Specific strategies for ASR text condition.
Experiments on handling ASR word lattices.

HANDLING ASR LATTICES

Some information about the lattices building is missing:

INTRODUCTION

- The new 2010 IWSLT TALK Task:
- English to French task.
- Constrained condition.
- Based on TED talks (http://www.ted.com).
- Wide variety of speakers and native languages.
- Two submissions required:
- Correct recognition results, *i.e.* ASR reference (CRR),
- Automatic speech recognition outputs (ASR).

The LIUM's systems emphasize on:

- Adaptation to ASR condition:
- SMT system trained on ASR-resembling text,
- case & punctuation treated by a statistical approach.
- Handling ASR lattices:
- reduction in size,
- transformation in confusion networks (CNs).
- Rescoring with part-of-speech LM:

ADAPTATION TO ASR SPECIFICITIES

- ASR outputs usually:
- are lowercased,
- contain no punctuation,
- differs from SMT on normalization:
- written numbers,
- acronyms,
- contractions.

Our approach:

- Create a parallel corpus which resembles ASR outputs:
- suppress all punctuation,
- -lowercase all words (with some exceptions),
- transform numbers into letters,

- word insertion penalty,
- linguistic weight used (two are provided).
- Provided lattices too large to be managed directly by Moses. \Rightarrow Necessity to reduce their size.
- This reduction can be summarized by these steps: 1. Compute link posteriors with *forward-backward* algo. 2. Split some words to normalize the lattice tokenization. 3. Merge identical words located in equivalent temporal area. 4. Prune links with posteriors < .001. Repeat step 3. 5. Prune links with posteriors < .01. Repeat step 3. 6. Remove filler words and ϵ (null transitions).
- 7. Transform the PLF lattice in confusion network and write both of them.

- compute 7-gram POS LM,- add a POS score to SMT hypothesis then rescore.

RESOURCES

Bilingual data

Available corpora:

		#tok	#tok
corpus	#lines	English	French
TED v1.1	84.5k	877k	943k
News-Commentary 10	84.6k	2M	2.4M
Europarl v5	1.6M	45M	45M
UN200x	7.2M	211.7M	240.2M
Gigaword release 2	22.5M	662.7M	771.7M
TED dev CRR	1307	12554	12528
TED dev ASR 1Best	259	11334	n/a
TED test CRR	3502	31980	n/a
TED test ASR 1Best	758	28115	n/a

Monolingual data

Target LMs trained on French sides of the proposed bitexts.

Data selection and filtering

- Filtering performed with lexical costs of sentence pairs.
- Data selection based on BLEU scores of corpora subsets.

- normalize many contractions and symbols.
- Train a SMT system on this corpus.
- Optimize it on the provided 1-best development corpus.
- Estimate a separate LM with no punctuation nor case.
- Treat the case and punctuation issues:
 - create a new bitext from original and ASR corpora (French),
 - train a new system with it,
- optimize on the CRR dev corpus (with case & punctuation),
- decode the translation output in ASR condition.
- \Rightarrow Necessity to limit the distortion.

 \Rightarrow Leads to a cased and punctuated output.

OFFICIAL RESULTS

RESCORING WITH PART-OF-SPEECH LM

- Tag n-best SMT hypotheses and French corpora with *lia_tagg*.
- Compute a 7-gram POS LM on the POS-tagged training data.
- Add a POS LM score to each n-best SMT hypothesis.
- Recompute the global score of each hypothesis with optimized linear coefficients.

	dev set	test set
Best point without POS	19.44	20.98
Best point after tuning	19.79	20.65

 \Rightarrow This approach does not generalize very well. \Rightarrow Further analysis of tags needed to understand these results.

LATE RESULTS

	WER	ASR condition 3			
		dev set		test set	
PLF	26.4	BLEU	TER	BLEU	TER
		19.44	69.33	20.98	66.09
		dev set		test set	
CN	26.1	BLEU	TER	BLEU	TER
		19.39	69.39	-	-
		dev set		test set	
1-Best	24.8	BLEU	TER	BLEU	TER
		19.19	69.45	20.14	66.77

ARCHITECTURE OF THE SYSTEMS

• PBSMT system using Moses (default settings).

• Alignments in both directions with Giza++.

• Fourteen feature functions:

- phrase and lexical translation probs (both directions),
- seven features for the lexicalized distortion model,
- word and phrase penalty,
- target LM.
- Default Moses tokenisation.
- 4-gram backoff LMs with SRILM:
- one LM on each corpora then linear interpolation.Coefficients optimized with cMERT on 100-best lists.

	WER	dev set		test set	
		CRR condition 1			
-	-	BLEU	TER	BLEU	TER
		26.45	61.02	25.07	57.60
		ASR condition 1			
1-Best	24.8	BLEU	TER	BLEU	TER
		16.82	70.86	15.82	71.15
		ASR condition 3			
		BLEU	TER	BLEU	TER
		18.49	70.01	18.27	70.92

Condition 1: with punctuation and casing. Condition 3: no punctuation, no case.

CONCLUSION

POS LM rescoring needs further investigation.
Confusion networks weights tuning is not optimal.
Bigger search space as SMT input leads to improvement:

compared to 1-best,
even when WER is higher.